

## Year 11 Revision Schedule 2023\_24

| Subject/Course: |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | GCSE Maths Higher (Edexcel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-----------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                 | Stude | ent Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             | GCSE Year 11 st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | udents                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Week 1          | Stude | ent Name:<br>Topic<br>1.1 Simple interest<br>1.2 Percentage increase and decrec<br>1.4 Compound interest and deprec<br>1.3 Calculating the original value<br>2.1 Multiplying out brackets (single<br>(revision) and two sets of single b<br>with simplification) Y8 HT3<br>2.4 Equations with fractions<br>3.1 Properties of polygons<br>3.2 Interior and exterior angles of<br>polygons<br>8.1 Expanding the product of two<br>8.2 Expanding expressions with m<br>two brackets | ease<br>ciation<br>e brackets<br>rackets<br>regular<br>brackets<br>ore than | GCSE Year 11 stu         Key knowledge/skills/questions         • To know what is meant by simple interest         • To solve problems involving simple interest         • Introduce use of multpliers to find percentages         • To use the multiplier method to calculate the result of a percentage increase or decrease         • To calculate the percentage change in a value         • To calculate the result of repeated percentage changes         • To calculate the original value, given a percentage change         • To solve equations where the variable is in the denominator of a fraction (lower sets: recap standard linear equations)         • To work out the sum of the interior angles of a polygons         • To calculate the interior and exterior angles of regular polygons | Resources/activities/links         Class notes and exam questions provided         Past papers (all exam boards online)         Tuesday after-school Maths Support 15.00 -         16.00         Websites:         SPARX Maths         Maths Genie         Corbett Maths – 5 a day         OnMaths         Pixi Maths         1st Class Maths         Boss Maths         Access Maths         BBC Bitesize |  |
|                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | <ul><li>To multiply out (or expand) two brackets</li><li>To multiply out three or more brackets</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                            |  |

| eek 2  | Monday 22<br>January 2024 | <ul> <li>4.2 Two-way tables</li> <li>4.3 Estimation of a mean from grouped data</li> <li>4.4 Cumulative frequency diagrams</li> <li>5.2 Time graphs</li> <li>5.3 Exponential growth graphs</li> <li>6.2 Using Pythagoras' theorem to solve problems</li> </ul>                                                                                                                                                                                                                           | <ul> <li>To interpret a variety of two-way tables<br/>Focus on when table needs to be drawn from<br/>scratch</li> <li>To calculate mean from ungrouped data in<br/>a frequency table<br/>To estimate mean from grouped data</li> <li>To draw a cumulative frequency diagram</li> <li>To find the interquartile range</li> <li>To interpret and draw time graphs - For<br/>example, sales over time,</li> </ul>                                                                                                                                                                                                                                                                                           | As above |
|--------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 3      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>To draw exponential growth graphs</li> <li>To use Pythagoras' theorem to calculate missing sides in right- angled triangles</li> <li>To use Pythagoras' theorem to solve problems in context</li> <li>To use the converse of Pythagoras' theorem to establish whether or not a triangle is a right-angled triangle</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |          |
| Week 3 | Monday 29<br>January 2024 | <ul> <li>2.2 Factorising algebraic expressions (single brackets)</li> <li>2.3 Expressions with several variables</li> <li>7.4 Algebraic fractions</li> <li>8.3 Factorising quadratic expressions (a=1)</li> <li>8.5 The difference of two squares</li> <li>9.3 Multiplying numbers in standard form</li> <li>9.4 Dividing with numbers in standard form</li> <li>9.5 Upper and lower bounds</li> <li>16.6 Problems involving limits of accuracy</li> <li>16.7 Error intervals</li> </ul> | <ul> <li>To factorise more complex expressions</li> <li>To expand and factorise expressions with<br/>more than one variable</li> <li>To add, subtract, multiply or divide<br/>fractions containing a variable (recap of<br/>numerical methods may be required in<br/>advance of the algebra)</li> <li>To factorise quadratic expressions</li> <li>To recognise and use the difference of two<br/>squares to solve an equation<br/>Converting in and out of standard form</li> <li>To divide numbers in standard form</li> <li>To use limits of accuracy when rounding<br/>data</li> <li>Combine limits of two or more variables<br/>together to solve problems and create error<br/>intervals</li> </ul> | As above |
| Week 4 | Monday 5<br>February      | <ul> <li>10.1 Volume of a cylinder</li> <li>10.2 Surface area of a cylinder</li> <li>10.3 Composite shapes</li> <li>11.1 Graphs from equations of the form ay ± bx = c</li> </ul>                                                                                                                                                                                                                                                                                                        | <ul> <li>To calculate the volume of a cylinder</li> <li>To calculate the curved surface area of a cylinder</li> <li>To calculate the total surface area of a cylinder</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | As above |

|    |           | 10.2 Gradient of a line                        | • To calculate the volumes and surface areas   |          |
|----|-----------|------------------------------------------------|------------------------------------------------|----------|
|    |           | 10.3 Drawing graphs by gradient-intercept      | of composite shapes                            |          |
|    |           | and cover-up methods                           | Io draw any linear graph from its equation     |          |
|    |           | 10.4 Finding the equation of a line from its   | I o solve a linear equation graphically        |          |
|    |           | graph                                          | • Rates of change                              |          |
|    |           | 10.5 Real-life uses of graphs                  | • To work out the gradient of a straight line  |          |
|    |           |                                                | • To know that the gradient of a line is the   |          |
|    |           |                                                | coefficient of $x(m)$ in $y = mx + c$ , the    |          |
|    |           |                                                | general equation for a straight line.          |          |
|    |           |                                                | • To uraw graphs using the gradient /          |          |
|    |           |                                                | • To find the equation of a line, given its    |          |
|    |           |                                                | aradiont and v-axis intercent                  |          |
|    |           |                                                | • To solve problems in practical contexts      |          |
|    |           |                                                | using graphs                                   |          |
|    |           | 12.1 Speed - Denisty - Pressure                | • To solve distance/time/speed problems        | As above |
|    | Half Term | 13.1 Introduction to trigonometric ratios      | • To solve problems involving                  | AS above |
|    | Monday 12 | 13.2 How to find trigonometric ratios of       | density/mass/volume                            |          |
|    | February  | angles                                         | • To understand what trigonometric ratios are  |          |
| Ŀ  |           | 13.3 Using trigonometric ratios to find angles | • To understand what the trigonometric         |          |
| ek |           | 13.4 Using trigonometric ratios to find        | ratios sine, cosine and tangent are            |          |
| Ve |           | lengths                                        | • To find the angle identified from a          |          |
| >  |           | longeno                                        | trigonometric ratio                            |          |
|    |           |                                                | • To find an unknown length of a right-        |          |
|    |           |                                                | angled triangle, give one side and another     |          |
|    |           |                                                | angle                                          |          |
|    |           | 14.7 Geometric Proofs                          | Use known geometric results to obtain          | As above |
|    | Monday 19 | 13.2 Probability of Independent and            | simple proofs                                  |          |
|    | February  | combined events                                | • To calculate the probability of independent  |          |
|    |           | 4.4 Generating non-linear sequences            | and combined events using a tree diagram       |          |
|    |           | Probability: Addition rules for outcomes of    | • To generate and identify non-linear          |          |
|    |           | events                                         | sequences from either a term-to term or a      |          |
| 9  |           | Probability: Combined events                   | postion-to-term rule                           |          |
| Š. |           | Probability: Tree diagrams                     | To work out the probability of two events      |          |
| Ň  |           | Probability: Independent events                | such as P(A) or P(B)                           |          |
| -  |           | Probability: Conditional probability           | I O WORK OUT THE PRODADILITY OF TWO EVENTS     |          |
|    |           |                                                | To use and construct cample space diagrams     |          |
|    |           |                                                | and tree diagrams to work out the probability  |          |
|    |           |                                                | of combined events                             |          |
|    |           |                                                | To calculate using the 'and' and the 'or' rule |          |
| 1  | 1         |                                                |                                                |          |

|        |           |                                               | To work out the probability of combined                     |          |
|--------|-----------|-----------------------------------------------|-------------------------------------------------------------|----------|
|        |           |                                               | events when the probabilities change after                  |          |
|        |           |                                               | each event                                                  |          |
|        |           |                                               |                                                             |          |
|        |           |                                               |                                                             |          |
|        |           | 4.1 Patterns in number                        | <ul> <li>To extend and identify number patterns</li> </ul>  | As above |
|        | Monday 26 | 4.2 Number sequences                          | <ul> <li>To identify simple linear rules</li> </ul>         |          |
|        | February  | 4.3 Finding the nth term of a linear sequence | • To generate sequences, given the rule                     |          |
|        |           | 4.4 Special sequences                         | • To generalise and find the nth term of a                  |          |
|        |           | 4.5 General rules from given patterns         | linear sequence                                             |          |
|        |           | 4.7 Finding the nth term for quadratic        | <ul> <li>To recognise and continue some special</li> </ul>  |          |
|        |           | sequences                                     | number sequences such as square numbers                     |          |
|        |           | 5.1 Ratio                                     | or a simple geometric progression                           |          |
|        |           | 5.2 Direct proportion problems                | <ul> <li>To find the nth term from a sequence of</li> </ul> |          |
|        |           | 5.4 Compound measures                         | patterns                                                    |          |
|        |           | 6.3 Angles in a polygon                       | <ul> <li>To continue a quadratic sequence, given</li> </ul> |          |
|        |           | 6.5 Angles: Parallel lines                    | the rule                                                    |          |
|        |           | 6.7 Scale drawings and bearings               | <ul> <li>To find the nth term of a quadratic</li> </ul>     |          |
|        |           |                                               | sequence from second differences                            |          |
|        |           |                                               | <ul> <li>To simplfy a given ratio</li> </ul>                |          |
|        |           |                                               | <ul> <li>To express a ratio as a fraction</li> </ul>        |          |
|        |           |                                               | <ul> <li>To divide amounts into given ratios</li> </ul>     |          |
| х<br>Г |           |                                               | • To complete calculations from a given ratio               |          |
| ee     |           |                                               | and partial information                                     |          |
| Š      |           |                                               | Combining ratios and taking things out to                   |          |
|        |           |                                               | create a new ratio                                          |          |
|        |           |                                               | <ul> <li>To recognise and solve problems using</li> </ul>   |          |
|        |           |                                               | direct proportion                                           |          |
|        |           |                                               | <ul> <li>To solve problems involving density/</li> </ul>    |          |
|        |           |                                               | mass/volume (pressure/force/area)                           |          |
|        |           |                                               | • To work out the sum of the interior angles                |          |
|        |           |                                               | in a polygon                                                |          |
|        |           |                                               | • To be able to calculate the size of the                   |          |
|        |           |                                               | interior and exterior angles of any regular                 |          |
|        |           |                                               | polygon                                                     |          |
|        |           |                                               | • To solve problems involving alternate,                    |          |
|        |           |                                               | corresponding, allied and opposite angles                   |          |
|        |           |                                               | • To be able to calculate the size of angles in             |          |
|        |           |                                               | special quadrilaterals using their geometric                |          |
|        |           |                                               | properties                                                  |          |
|        |           |                                               | • To be able to make a scale drawing to a                   |          |
|        |           |                                               | given scale                                                 |          |

|     |                |                                       | To be able to convert measurements to                    |          |
|-----|----------------|---------------------------------------|----------------------------------------------------------|----------|
|     |                |                                       | calculate actual distances                               |          |
|     |                |                                       | • To be able to read, interpret and draw                 |          |
|     |                |                                       | bearings diagrams                                        |          |
|     |                |                                       | • To use the geometrical properties of a                 |          |
|     |                |                                       | diagram to calculate a bearing                           |          |
|     |                | 7.1 Congruent triangles               | To identify two congruent triangles                      | As above |
|     | Monday 4 March | 7.2 Rotational symmetry               | <ul> <li>To justify why two triangles are</li> </ul>     |          |
|     |                | 7.3 Transformations                   | congruent                                                |          |
|     |                | 7.4 Combinations of transformations   | • To identify and describe the rotational                |          |
|     |                | 7 5 Bisectors                         | symmetry of a shape                                      |          |
|     |                | 7.6 Defining a locus                  | • To translate a 2D shape, using vectors to              |          |
|     |                | 7 7 Loci problems                     | describe the transformation                              |          |
|     |                | 7.8 Plans and elevations              | • To draw and describe the image of one or               |          |
|     |                | 8.6 Quadratic factorisation           | more reflections                                         |          |
|     |                | 8.7 Factorising ax2 + bx + c          | To draw and describe a rotation that will                |          |
|     |                | 8.8 Changing the subject of a formula | take an object onto its image                            |          |
|     |                | 9.4 Sectors                           | To enlarge a 2D shape by a positive or                   |          |
|     |                | 9.5 Volume of a prism                 | negative integer or fraction scale factor and            |          |
|     |                | 9.6 Cylinders                         | describe the transformation                              |          |
|     |                | 9.7 Volume of a pyramid               | To combine transformations                               |          |
|     |                | 9.8 Cones                             | To describe a sequence of                                |          |
| ~   |                | 9 9 Spheres                           | transformations to map an object onto its                |          |
| k 8 |                |                                       | image                                                    |          |
| ee  |                |                                       | • To construct the bisectors of lines and                |          |
| ≥   |                |                                       | angles                                                   |          |
|     |                |                                       | • To draw a locus for a given rule                       |          |
|     |                |                                       | • To solve loci problems in practical contexts           |          |
|     |                |                                       | • To draw 2D representations of 3D objects               |          |
|     |                |                                       | from different views                                     |          |
|     |                |                                       | • To factorise quadratic expressions with the            |          |
|     |                |                                       | coefficient of x2 not equal to 1                         |          |
|     |                |                                       | • Be able to rearrange formulae - where the              |          |
|     |                |                                       | subject appears more than once                           |          |
|     |                |                                       | • To calculate the length of an arc and the              |          |
|     |                |                                       | area of a sector                                         |          |
|     |                |                                       | <ul> <li>To calculate the volume of a prism</li> </ul>   |          |
|     |                |                                       | • To calculate the volume and surface area of            |          |
|     |                |                                       | a cylinder                                               |          |
|     |                |                                       | <ul> <li>To calculate the volume of a pyramid</li> </ul> |          |
|     |                |                                       | • To calculate the volume and surface area of            |          |
|     |                |                                       | a cone                                                   |          |

| Monday 11 March17.2 Solving quadratic equations by<br>factorisation• To solve a quadratic equation by<br>factorisation• To solve a quadratic equation by<br>factorisation• As aboveMonday 11 March17.2 Solving a quadratic equation by using<br>the quadratic formula<br>17.3 Solving a quadratic equation by using<br>the quadratic formula<br>11.2 Solving a quadratic equation by using<br>the quadratic formula<br>11.2 Solving a quadratic equations by<br>drawing graphs• To solve a quadratic equation by<br>factorisation<br>• To use the quadratic formula to solve a<br>quadratic equation where factorisation is not<br>possible<br>• To solve a pair of simultaneous equations<br>graphically<br>• To solve a quadratic equation by drawing a<br>ranh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Monday 11 March17.2 Solving quadratic equations by<br>factorisation<br>17.3 Solving a quadratic equation by using<br>the quadratic formula<br>17.3 Solving a quadratic equation by using<br>the quadratic formula<br>17.3 Solving a quadratic equation by using<br>the quadratic formula<br>17.3 Solving a quadratic equation by using<br>the quadratic formula<br>11.2 Solving simultaneous equations by<br>drawing graphs<br>11.3 Solving a quadratic equations by<br>drawing graphs• To solve a quadratic equation by<br>factorisation<br>• To use the quadratic formula to solve a<br>quadratic equation where factorisation is not<br>possible<br>• To solve a pair of simultaneous equations<br>graphically<br>• To solve a quadratic equation by drawing a<br>graphAs above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Monday 11 March17.2 Solving quadratic equations by<br>factorisation<br>17.3 Solving a quadratic equation by using<br>the quadratic formula<br>17.3 Solving a quadratic equation by using<br>the quadratic formula<br>11.2 Solving simultaneous equations by<br>drawing graphs• To solve a quadratic equation by<br>factorisation<br>• To use the quadratic formula to solve a<br>quadratic equation where factorisation is not<br>possible<br>• To solve a pair of simultaneous equations<br>graphically<br>• To solve a quadratic equation by drawing aAs above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Monday 11 March17.2 Solving quadratic equations by<br>factorisation• To solve a quadratic equation by<br>factorisationAs above17.3 Solving a quadratic equation by using<br>the quadratic formula• To solve a quadratic formula to solve a<br>quadratic equation where factorisation is not<br>possible• To use the quadratic formula to solve a<br>quadratic equation solve a<br>quadratic equation where factorisation is not<br>possible• To solve a quadratic equation by<br>factorisation17.3 Solving a quadratic equation by using<br>the quadratic formula<br>11.2 Solving simultaneous equations by<br>drawing graphs• To solve a pair of simultaneous equations<br>graphically• To solve a quadratic equation by drawing a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Graphs       1.1.3 Solving quartet equations by drawing graphs       1.1.4 Solving cubic equations by drawing graphs       1.1.4 Solving cubic equations by drawing graphs         11.4 Solving cubic equations by drawing graphs       1.1.4 Solving cubic equations by drawing graphs       1.1.4 Solving cubic equations by drawing graphs         10.1 Drawing linear graphs from points       10.7 Gradients of Parallel and perpendicular lines       To know that parallel lines have the same gradient         11.4 Pythagoras' theorem and isosceles triangles       11.5 Pythagoras' theorem in three dimensions       To know that the product of the gradients of perpendicular lines is always -1         11.12 Trigonometry and bearings       12.1 Similar triangles       To calculate the length of a shorter side in a right-angled triangle         12.2 Areas and volumes of similar shapes       To use the geometry of isosceles triangles and Pythagoras' theorem to solve angle problems involving         • To solve that two triangles role weaking trigonometry       • To solve theorem to solve angle problems using trigonometry         • To solve that two triangles role weaking trigonometry       • To solve that two triangles are similar To owrk out the scale factor between similar triangles |  |

|     |                 | 13 5 Probability and Vonn diagrams         | • To construct and road Vonn diagrams to                                               | Acabovo  |
|-----|-----------------|--------------------------------------------|----------------------------------------------------------------------------------------|----------|
|     | Monday 18 March | 15.2 Elimination mothed for simultaneous   | <ul> <li>To construct and read venin diagrams to<br/>represent probability.</li> </ul> | AS above |
|     | Monday to March | aguations                                  | • To use the elimination method to solve                                               |          |
|     |                 | 15.2 Substitution mothed for simultaneous  | • To use the emmination method to solve                                                |          |
|     |                 | 13.5 Substitution method for simulatious   | • To use the substitution method to solve                                              |          |
|     |                 | 15 4 Palancing coefficients to colve       | • To use the substitution method to solve                                              |          |
|     |                 | 15.4 Dalaheng coefficients to solve        | Simulations equations                                                                  |          |
|     |                 | Simulaneous equations                      | • To use the method of balancing coefficients                                          |          |
| 0   |                 | 15.5 Using simultaneous equations to solve | to solve simultaneous equations                                                        |          |
| k 1 |                 | problems                                   | <ul> <li>To solve problems, using simultaneous</li> </ul>                              |          |
| eel |                 | 15.5 Using simultaneous equations to solve | Inear equations with two variables                                                     |          |
| Ň   |                 | problems                                   | I o solve problems using linear and non-                                               |          |
|     |                 | 15.6 Linear inequalities                   | Inear simultaneous equations                                                           |          |
|     |                 | 15.7 Graphical inequalities                | • To solve a simple linear inequality                                                  |          |
|     |                 | 16.2 Estimating powers and roots           | • To show a graphical inequality                                                       |          |
|     |                 | 16.3 Negative and fractional powers        | Io use known facts and trial and                                                       |          |
|     |                 |                                            | improvement to estimate the value of powers                                            |          |
|     |                 |                                            | and roots                                                                              |          |
|     |                 |                                            | <ul> <li>To represent roots and decimal numbers as</li> </ul>                          |          |
|     |                 |                                            | indices                                                                                |          |
|     |                 | 16.1 Rational numbers, reciprocals,        | <ul> <li>To recognise rational numbers,</li> </ul>                                     | As above |
|     | Monday 25 March | terminating and recurring decimals         | reciprocals, terminating and recurring                                                 |          |
|     |                 | 16.4 Surds                                 | decimals                                                                               |          |
|     |                 | 16.7 Choices and outcomes                  | <ul> <li>To convert terminal decimals to fractions</li> </ul>                          |          |
|     |                 | 17.4 Solving quadratic equations by        | • To convert fractions to recurring decimals                                           |          |
|     |                 | completing the square                      | <ul> <li>To find reciprocals of integers or fractions</li> </ul>                       |          |
|     |                 | 17.5 The significant points of a quadratic | To simplify surds                                                                      |          |
|     |                 | curve                                      | <ul> <li>To calculate with and manipulate surds,</li> </ul>                            |          |
|     |                 | 17.6 Solving equations, one linear and one | including rationalising a denominator                                                  |          |
|     |                 | nonlinear using graphs                     | <ul> <li>To work out the number of choices,</li> </ul>                                 |          |
| []  |                 | 17.7 Solving quadratic equations by the    | arrangements or outcomes when choosing                                                 |          |
| k 1 |                 | method of intersection                     | from lists or sets                                                                     |          |
| ee  |                 | 17.8 Solving linear and non-linear         | <ul> <li>To solve quadratic equations by completing</li> </ul>                         |          |
| 8   |                 | simultaneous equations algebraically       | the square                                                                             |          |
|     |                 | 17.9 Quadratic inequalities                | <ul> <li>To identify and interpret roots, intercepts</li> </ul>                        |          |
|     |                 | 18.1 Sampling data                         | and turning points of quadratic functions                                              |          |
|     |                 | 18.2 Frequency polygons                    | graphically                                                                            |          |
|     |                 | 18.3 Cumulative frequency graphs           | To deduce roots algebraically and turning                                              |          |
|     |                 | 18.4 Box plots                             | points by completing the square                                                        |          |
|     |                 | 18.5 Histograms                            | <ul> <li>To use this information to sketch the</li> </ul>                              |          |
|     |                 | 18.6 stem and leaf                         | curve                                                                                  |          |
|     |                 | 18.7 Pie charts                            | <ul> <li>To solve a pair of simultaneous equations</li> </ul>                          |          |
|     |                 |                                            | where one is linear and one is non-linear,                                             |          |
|     |                 |                                            | using graphs and where they intersect                                                  |          |

|    |                |                                          | • To solve quadratic equations using                      |          |
|----|----------------|------------------------------------------|-----------------------------------------------------------|----------|
|    |                |                                          | intersection points between graphs or at axes             |          |
|    |                |                                          | • To use algebraic techniques including                   |          |
|    |                |                                          | substitution and rearranging to solve a pair              |          |
|    |                |                                          | of equations                                              |          |
|    |                |                                          | To colve a guadratic inequality                           |          |
|    |                |                                          |                                                           |          |
|    |                |                                          | algebraically                                             |          |
|    |                |                                          | To show a graphical quadratic inequality                  |          |
|    |                |                                          | Io know now to find regions that satisfy                  |          |
|    |                |                                          | more than one graphical inequality                        |          |
|    |                |                                          | • To know the range of methods of sampling                |          |
|    |                |                                          | and decide which method is best when                      |          |
|    |                |                                          | collecting reliable, unbiased data                        |          |
|    |                |                                          | I o draw frequency polygons for discrete                  |          |
|    |                |                                          | and continuous data                                       |          |
|    |                |                                          | • To find a measure of dispersion (the                    |          |
|    |                |                                          | interquartile range) and a measure of                     |          |
|    |                |                                          | location (the median) using a graph                       |          |
|    |                |                                          | <ul> <li>To draw and read box plots</li> </ul>            |          |
|    |                |                                          | <ul> <li>To draw and read histograms where the</li> </ul> |          |
|    |                |                                          | bars are of unequal width                                 |          |
|    |                |                                          | To read and interpret stem and leaf diagrams              |          |
|    |                |                                          | <ul> <li>To find the median, quartiles and</li> </ul>     |          |
|    |                |                                          | interquartile range from a histogram                      |          |
|    |                | Estimating powers and roots              | To use known facts and trial and                          | As above |
|    | Easter         | Equation of a circle                     | improvement to estimate the value of powers               |          |
|    | Monday 1 April | Cubic, exponential and reciporcal graphs | and roots                                                 |          |
|    |                | Transformations of the graph $y = f(x)$  | To recognise and plot the equation of a                   |          |
|    |                |                                          | circle                                                    |          |
|    |                |                                          | To use this equation to identify the centre               |          |
|    |                |                                          | and radius of the circle                                  |          |
| 1  |                |                                          | To find the equation of a tangent to a circle             |          |
| ek |                |                                          | at a given point                                          |          |
| Ve |                |                                          | To recognise and plot cubic, exponential and              |          |
| >  |                |                                          | reciprocal graphs                                         |          |
|    |                |                                          | To sketch translations and reflections of the             |          |
|    |                |                                          | graph of a given function                                 |          |
|    |                |                                          | To be able to transform graphs and identify               |          |
|    |                |                                          | the effect of transformations on functions                |          |
|    |                |                                          | such as $y = 2f(x)$ ; $y = f(2x)$ ; $y = f(x) + 2$ and    |          |
|    |                |                                          | y = f(x + 2)                                              |          |

|            |                 | Circle theorems                                | To use circle theorems to find the size of      | As above |
|------------|-----------------|------------------------------------------------|-------------------------------------------------|----------|
|            | Easter          | Cyclic quadrilaterals                          | angles in circles                               |          |
|            | Monday 8 April  | Tangents and chords                            | To find the size of angles in cyclic            |          |
|            |                 | Alternate segment theorem                      | quadrilaterals                                  |          |
|            |                 | Direct proportion                              | To use tangents and chords to find the size     |          |
|            |                 | Inverse proportion                             | of angles in circles                            |          |
|            |                 |                                                | To use the alternate segment theorem to         |          |
| <b>L</b> 3 |                 |                                                | find the size of angles in circles              |          |
| k 1        |                 |                                                | To solve problems where two variables have      |          |
| ee         |                 |                                                | a directly proportional relationship (direct    |          |
| 3          |                 |                                                | variation)                                      |          |
|            |                 |                                                | To work out the constant and equation of        |          |
|            |                 |                                                | proportionality                                 |          |
|            |                 |                                                | To solve problems where two variables have      |          |
|            |                 |                                                | an inversely proportional relationship (inverse |          |
|            |                 |                                                | variation)                                      |          |
|            |                 |                                                | To work out the constant and equation of        |          |
|            |                 |                                                | proportionality                                 |          |
|            |                 | Trigonometry - Solving any triangle            | To use the sine rule and the cosine rule to     | As above |
|            | Monday 15 April | Using sine to calculate the area of a triangle | find sides and angles in non-right-angled       |          |
|            |                 | Distance–time graphs                           | triangles                                       |          |
|            |                 | Velocity–time graphs                           | To use the sine rule to work out the area of    |          |
|            |                 | Estimating the area under a curve              | any triangle, given two sides and the included  |          |
|            |                 | Rates of change                                | angle                                           |          |
|            |                 | Functions                                      | To draw and interpret distance–time graphs      |          |
|            |                 | Composite functions                            | To know that the gradient represents the        |          |
|            |                 | Iteration                                      | speed of the object                             |          |
| -          |                 |                                                | To draw and interpret velocity-time graphs      |          |
| 14         |                 |                                                | To know that the gradient represents the        |          |
| ek         |                 |                                                | acceleration of the object                      |          |
| ٧e         |                 |                                                | To know that the distance travelled             |          |
| >          |                 |                                                | To optimate the area under a curve by using     |          |
|            |                 |                                                | rectangular string                              |          |
|            |                 |                                                | To interpret the gradient at a point on a       |          |
|            |                 |                                                | curve as the instantaneous rate of change       |          |
|            |                 |                                                | To apply the concept of rates of change in      |          |
|            |                 |                                                | numerical, algebraic and graphical contexts     |          |
|            |                 |                                                | To interpret simple expressions as functions    |          |
|            |                 |                                                | with inputs and outputs                         |          |
|            |                 |                                                | To interpret the reverse process as the         |          |
|            |                 |                                                | inverse function                                |          |

|          |                            |                       | To use function notation to draw graphs and   |          |
|----------|----------------------------|-----------------------|-----------------------------------------------|----------|
|          |                            |                       | identify values by substitution               |          |
|          |                            |                       | To interpret the succession of two functions  |          |
|          |                            |                       | as a composite function and be able to find   |          |
|          |                            |                       | output values from given input values         |          |
|          |                            |                       | To find approximate solutions to equations    |          |
|          |                            |                       | numerically using iteration                   |          |
|          |                            |                       | To set up, solve and interpret the answers in |          |
|          |                            |                       | arouth and deeps problems including           |          |
|          |                            |                       |                                               |          |
|          |                            |                       | compound interest, working with general       |          |
|          |                            |                       | iterative processes                           |          |
|          |                            | Properties of vectors | To add and subtract vectors                   | As above |
| ю        | Monday 22 April            | Vectors in geometry   | To multiply vectors by a scalar               |          |
| Ť        |                            |                       | To represent a vector in diagrammatic and     |          |
| ě        |                            |                       | column form                                   |          |
| Ne       |                            |                       | To use vectors to solve geometric problems    |          |
| -        |                            |                       | To use vectors to construct geometric         |          |
|          |                            |                       | arguments and proofs                          |          |
| 6        |                            | Exam Practice         |                                               | As above |
| Ē        | Monday 29 April            |                       |                                               |          |
| Š        |                            |                       |                                               |          |
| Ne Ne    |                            |                       |                                               |          |
| -        |                            |                       |                                               |          |
| <u> </u> |                            | Exam Practice         |                                               | As above |
| Ξ        | Monday 6 May               |                       |                                               |          |
| ee       |                            |                       |                                               |          |
| Š        |                            |                       |                                               |          |
|          |                            | Evam Dractice         |                                               | As above |
| 18       | Monday 13 May              | Examinactice          |                                               |          |
| ž        | Monuay 15 May              |                       |                                               |          |
| let      |                            |                       |                                               |          |
| 5        |                            |                       |                                               |          |
| 6        |                            | Exam Practice         |                                               | As above |
| H        | Monday 20 May              |                       |                                               |          |
| Š        |                            |                       |                                               |          |
| Š        |                            |                       |                                               |          |
|          |                            |                       |                                               |          |
|          |                            | <b>- - - -</b>        |                                               |          |
| 0        |                            | Exam Practice         |                                               | As above |
| k 20     | Half Term                  | Exam Practice         |                                               | As above |
| eek 20   | Half Term<br>Monday 27 May | Exam Practice         |                                               | As above |

| Week 21 | Monday 3 June  | Exam Practice | As above |
|---------|----------------|---------------|----------|
| Week 22 | Monday 10 June |               |          |